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ABSTRACT---- This paper compares important provisions and parameters related to anchorage of straight bars in 

reinforced concrete of BS8110, EC2  and ACI-318 as well as  empirical equations by by Orangun et al , Darwin et al.  
and Batayneh are also considered in a parametric study. 

 
The study investigates the parameters which have influences on the bond and anchorage as there are some of them 

have not been considered by all of them and found their significance in obtaining more accurate bond resistance like 
transverse pressure, transverse reinforcement, the yield strength of the transverse reinforcement, bar geometry, 

anchorage length, concrete cover and transverse pressure. 

 
A parametric study and test results from literature are used in demonstrating the treatments by them and significant 

commentaries are given. 

 
Keywords--- straight anchorage, bond stress,anchorage length ,concrete strength, concrete cover, transverse  
reinforcement, transverse pressure  
_________________________________________________________________________________________________ 

 
1. INTRODUCTION 
 
There is a considerable debate about the treatments of bond and anchorage in codes of practice. The debate rooted in 

their approach in understanding the factors that influencing firstly the mechanism of transferring force between the 
ribbed bars and the surrounding concrete and secondly the bond failure in the surrounding concrete to the anchored bars.  

 
These factors which include : the strength of the concrete, the ratios of covers and bar spacings to the bar diameter,the 

local properties of the concrete adjacent to the bar, which are affected by the position and orientation of the bar relative to 
the direction of concreting, the ratio of the bond length to the bar diameter in end anchorage or pull- out situations, the 

details of the transverse reinforcement crossing potential failure surfaces transverse pressure from reactions the details of 

the bar ribs the size of the bar, given that scale effects often arise where concrete is subjected to non - uniform tension. 

 
The bond of contemporary ribbed bars relies on the bearing of the ribs on the surrounding concrete. This bearing 

produces outward radial forces and , for normal ratios of cover to bar size , bond failure involves splitting of the concrete 

cover. It has often been found that at failure small wedges of concrete remain locked in position ahead of the ribs. As the 
thickness of cover increases the failure surface around the bar changes and becomes a continuous cylinder with a 

diameter equal to that of the ribs. Splitting failure remains possible as the actions on this failure surface are shear and 

radial compression with the latter requiring tension in the cover. Eventually, for very large covers, bars may be extracted, 

without splitting the cover. 

 
It is clear from the above that bond resistance should be expected to be influenced by the thickness of the concrete cover 
to a bar. It is also reasonable to expect influences from transverse reinforcement crossing the surface at which failure 

occurs and from transverse pressure acting at a support. 

 
In most structural members the maximum tension in the main bars is reduced at a rate controlled by the shear on the 

member and the shear reinforcement provided, leaving only a part of the tension to be absorbed by the end anchorages of 
the bars.Within the end anchorages the rate of the reduction of bar forces is not externally controlled but depends upon 
 
 

 



 
the relationship between bond stress and slip ( movement of the bar relative to the surrounding concrete). Slip is greatest a t the 

end where the bar forces are greatest . At least initially the bond stresses are therefore greatest at the same end and decrease 

toward the free ends of the bars. Splitting can be initiated at the loaded ends and may well produce a progressive failure, 

throughout which the average bond stress is always below the maximum bond strength per unit length.  

 
There are no publications where the codes based on them in derivation of their expressions. It is necessary to carry out 
a parametric evaluations and using tests from literature to:  

1. Investigate the differences between these codes with respect to the concerned parameters mentioned above and, 

2. Judge equations by Orangun, Darwin and Batayneh in terms of their accuracy and 

Comparisons with the codes. 

 

2.ANCHORAGE REQUIREMENTS 

 

The load effect at any section in the main bars required by a member’s design for bending and shear and where relevant 
axial load and torsion. The resistance is the force at the same section, that can be developed by bond and any mechanical 
anchorages such as end hooks or welded cross bars. 

For slender beams with deigned stirrups, the structural model by EC2
(2)

 is a truss, such as that shown in Fig.(1) for a 

region in which the shear force and shear reinforcement are constant. The force T in the tension chord can be found by  

considering rotational equilibrium at section 1-1  is T  M  1 
V cot

z 2     

while for vertical equilibrium at section 2-2 is V  Asv fsv z cot / s 
 

where Asv is the area of one model of stirrups representing the total area of stirrups in a length s and fsv is the stress in 

the shear reinforcement at the design ultimate limit state. is the angle of the web compression and can, subject to the 

limit on the concrete compression by chosen freely in the range 1  cot  2.5. 

 
The first equation gives a simple solution for the distribution of the chord force, which is correct for most of any shear 
span. 

 

An alternative way of obtaining the force T can be derived by considering a vertical section 3-3 at a 

distance (z cot) / 2 in the direction of increasing moment from section 1-1. The moment at section 3-3 is M M 

where M V (z cot) / 2 and M M / z  M / z V (cot) / 2 which is the same as the force in the first  
equation. Thus the design tensile force for the bottom chord can be obtained by the ‘shift rule’, i.e. by shifting the 

M / z diagram through a distance equal to (z cot) / 2 in the direction of decreasing moment. 

 
The chord force obtained from a case-specific truss model, the first equation and the shift rule are generally similar, 
provided the angle of web compression at the level of the tension chord is constant. 

 

When a concentrated load act at the high moment end of a simply supported shear span and is applied to the top surface, 

the web compression radiates from beneath the load. Cot reduces from its value in the remainder of the shear span to 

area at the loaded section and the tension chord force at this section is M / z .In these circumstances the value of T  

from the question has to be limited to T  M max / z .If there is any doubt about the variation of the force in the section 

chord, it should be calculated from a truss model of the whole shear span. 
 

The excess of T over  M / z , for a given loading on a given beam with vertical stirrups, is proportional to  cot and  
can thus be reduced by decreasing cot in the de cot sign range 1  cot  2.5, although the benefit in terms of 

anchorage conditions is obtained at the cost of increasing the amount of shear reinforcement require. Another way of 

decreasing the excess of T is to use inclined rather than vertical stirrups. 

 
The forces considered above are those in tension chords. If part of the main reinforcement is outside the web breadth in a 
tension flange, the force in the reinforcement is increased by an amount equal to the longitudinal components of the 

forces in the compression members of the horizontal truss system by which the changes of longitudinal forces arising 
from the web truss are transmitted to the bars in the flange outstands- see Fig.(1)- 
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Fig.(1) Conditions of equilibrium in a truss model 

 

In slender members without designed shear reinforcement, the tension chord force can be increased above M / z inspite 

of the absence of web truss action. Factors involved in this probably include inclinations of flexural cracks, the 

development of some arching due to the bending of the concrete teeth between flexural cracks and compression across 

flexural cracks induced by vertical displacement across crack faces. EC2 allows for an increase of the chord force by 

applying a shift equal to d to the M / z diagram, although it seems likely that the shift should be a function of the shear. 



 
 
 

 

It might be argued that the tension force in the bars should be very low in areas where there are no flexural cracks, but it 

is not usual to rely upon the longitudinal tension in the concrete because of the possibility of there being significant 
tension due to restrained shrinkage. 

 
In short shear spans loaded fm above and supported from below, even in the absence of shear reinforcement, the shear 

resistance can be above the shear cracking load. this is due to the possibility of the loading being carried o a support 

directly by inclined compression, i.e. a tied arch action which depends on the end anchorage of the reinforcement. Truss 
models, suitable for designs relying on this action, are shown in Fig.(2) .The two models for short shear spans with 

stirrups give same results in terms of the tensions at supports.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig.(2) Strut and tie models and main steel forces for short shear spans 

 
The paragraphs above show how the resistance required of the tension chord can be obtained from a design for shear and 

bending. It remains to show how the resistance available from bond and, where relevant, mechanical anchorage can be 

assessed.  

For any individual bar, anchored by bond alone, the design yield force can be developed in a length ld , such that 
 

0ld  fbd dl  Fyd  
if there is a mechanical anchorage, such as a hook, at the end of a bar  

0ld  fbd dl  Fyd   Fhd  

where Fhd is the design force developed by the hook, fbd is the design bond stress for a length dl , and ld is 

measured from the loaded end of the hook. 

 

The bond stress fbd  is a function of the concrete strength, the bar’s cover and spacing from other bars, the transverse 
 
pressure and the transverse reinforcement although not all of these factors are taken into account in all design 
recommendations. The ways in which the various factors are treated vary in different approaches. In some, all of those  

considered are expressed within fbd , but in others including EC2, some of them are taken into account by factors applied 

to ld . If, as in EC2, the bond stress is taken to be constant along any part of the ld where there are no changes of cover, 

transverse pressure at the potential development of Fyd is as illustrated in Fig.(3). 
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Fig.(3) Example of bar force development in anchorages 

 
 
 
 



 
The total resistance available from the main steel of a member can be obtained as the sum of the potential resistances 

from the individual bars. This can be compared with the resistance required and needs to exceed it at all points.  
Fig.(4) shows this for an example of a simply supported beam subjected to a series of concentrated loads approximately a 

uniform distribution of loading. The form of the diagram is similar to one inn EC2. The bars ‘ a ’ continue to the end of  
the beam and their anchorage length is reduced by the effect of the transverse pressure from the support. The bars ‘ b ’ 

and ‘ c ’ are curtailed in the shear span, where there is no transverse pressure, and their development lengths are longer.  

The force that can be developed by the main steel is equal to the force required by the truss model T  at four places: i)at 
 
the inner edge of the support, i) and iii) at the locations of the curtailments of bars ‘ b ’ and ‘ c ’ and iv) in the region 

of maximum moment. 

 
The main purpose of a diagram of this type is to determine where bars can be curtailed. The situation at the inner face of 
the support defines the number of bars that have to be continued to the end of the beam. Thereafter the intersections of 

the line for Twith horizontal line atFydaandFydbFydadetermine the locations at which bars can be curtailed. 

 

The figure presents a slightly special case in that the development lengths of the three groups of bars do not overlaps. If 
they do, the diagram becomes a little more complicated, but there is not difficulty in principle in its construction. 

 

In practice the line for the required chord force will often be an envelope of the lines from several load cases, but this 
presents no special problems. 

 

It is possible that if transverse reinforcement is stressed due to the shear on a beam, the stresses developed in it may be 

higher than those taken into account in the estimation of ld which assumes the transverse bars to be stressed only the 
 
effects of bond. The higher stresses could be expected to improve the bond of bars in the corners of stirrups. There are 

however difficulties in making allowance for such an effect. One is that the stresses in stirrups resisting shear have their 

maxima at the levels, where the stirrups are intersected by inclined cracks, and may be significantly reduced by bond in 
the lengths between shear cracks and the level of the main bars. Another problem arises if the design of anchorages is 

based on an envelope of chord forces, as it would be difficult to identify the stirrup stresses relevant to the individual load 

cases.  
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Fig.(4) Diagram showing tension chord forces required and the forces that can be developed by bond 

 
 
 



 

3.CODE OF PRACTICE RECOMMENDATIONS 
 

3.1BS 8110 
(1) 

In the British code BS8110:2005, the design ultimate bond stress fbd  for bars with a minimum cover of at least one bar 
 

diameter(  ) and a minimum clear spacing also at least one bar diameter, is equal to k  fcu  , where k is a constant  
depending on the type of bar and whether the bar is in tension or compression and  fcu is the cube strength of the concrete. 

The design tensile force that can be developed in a bar is :  

Fsd   k  fcu ...lb,eff ……………………..(1)   

For straight bars the effective anchorage length lb,eff is the distance from the bar end to the section at which Fsd is 

considered . 

 

The design value of k for normal type 2 deformed bars in tension is 0.5 which corresponds to a characteristic value of 

0.7. The code applies k =0.5 to bars in beams only if minimum links are provided . In the absence of minimum links the  
design value of k is 0.35. For bars in slabs k =0.5 whether or not there are links.This could well be interpreted as 

meaning that k=0.5 is all right for interior bars with or without minimum links, but requires links around corner bars.  

 
For anchorages with end hooks or bends , BS8110 generally requires checks on both bond and bearing stresses.So far as 

bond is concerned , the design limit for the bar force at the start of the bend is:   

FRd 1   ..lb,eff . fbd …………………….( 2) 
 

where : fbd is the same as for straight anchorages and lb,eff is in general the length of the bend plus that of the tail. 

However the following lengths may be used if greater 
 

3.2Euro Code 2:2004 
(2) 

 
EC2 considers most of the parameters which have influences on bond resistance in reinforced concrete structures such as 

concrete strength, position and orientation during casting, anchorage type, concrete cover, bar spacing, transverse 

reinforcement and transverse pressure. 

 
The Code defines a basic design ultimate bond stress for ribbed bars as:  

 

fbd   2.2512 fctd  ……………………….. (3) 
 

Where: f ctd design tensile strength of concrete,1 is a coefficient related to the quality of the bond condition and the 

position of the bar during concreting,2  is a coefficient which considers bar diameter,1  1.0 where good 

conditions are obtained. e.g. for bottom bars and for top bars where there is no more than 250mm of fresh concrete 

below the bars or where the bars are more than 300mm from the top, 1  0.7 for other cases e.g. bars more than 

250mm from bottom (and less than 300mm from the top if h > 600mm ) and for all bars in structural elements built 

with slip forms, 2 1.0 for   32mm and 2  132 /100 for  > 32mm 

 
The basic anchorage length is defined as : 

l
b,rqd 

  
f

 sd 

………………………. (4)  4  fbd 
    

Where:  f sd  design stress of a bar for the ULS at the position from where the anchorage is  measured. The design 
 

anchorage length lb d can be calculated from: 

 

lbd   12345 lb,rqd   lb,min ………………… (5) 
 
where : 
 
 
 
 

 



 

lb d = design anchorage length,1 = the effect of the form of the bars (assuming adequate cover), 2 = the effect of 

concrete cover. cd  min cb , cs , s / 2,3 = the effect of confinement by transverse reinforcement ,4 = the 

influence of one or more welded transverse bars along the design anchorage length lb d ,5 = the effect of pressure 

transverse to the plane of splitting along the design anchorage length, 1 =1.0 for straight bars,  

 2   1  0.15cd  /  for straight bars, 2   1  0.15cd   3/  for other than straight bars -  2   0.7
and 1.0, 

3 =1- K 3   0.7 and  1.0 where :    Ast    Ast,min   As  , As =  area of a single anchored bar with 

the maximum bar diameter ,  Ast = cross-sectional area of the transverse reinforcement along the design anchorage, 

length. (note Ast =area of a transverse bar, Ast,min cross-sectional area of the minimum transverse reinforcement . =0.25 

As for beams and 0 for slabs, K  0.1for a bar in the bends of stirrups, K  0.05 for a bar with transverse bars in its 

cover, K  0 for a bar in the cover to transverse bars,4 is not relevant in the present context and is taken as 

1.0, 5   1  0.04 p . 

In addition to the individual limits on 23 and5  the product of 2 ,3 and 5  is limited to  0.7 and  1.0 , p = 

transverse pressure N / mm
2 , lb ,min  = the minimum anchorage length if no other limitation is applied: for anchorage in  

tension  : lb,min > maximum of ( 0.3 lb,rqd ;10 ; 100mm),for anchorage in compression lb,min > maximum of ( 

0.6 lb,rqd  ;10 ; 100mm)            

From the above , ignoring lb ,min       

         
sd 

    
l           …………………………(6) 

 

9
 

f 
  

 bd   12345 
2 

     
           1    ctd     

Where f 
ctd 

 f 
ctk  ,0.05 

/15  0.14 f 
2 / 3

 for  f 
ck 
 50N / mm

2 

              ck  

In effect equation (6) corresponds to design and characteristic bond strengths 

 f   2.2512   f    0.31512  f 
2 / 3

  …………..……………(7) 
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f   2.2512  f   0.472512 f 
2 

/ 3  ………………………..(8) 
bk 

  

ctk 
  

 12345 12345 
ck   

      

f
ck 50 N / mm

2
 , 

f
ctk  1.48 ln1  fcm /10 where  f cm is the mean cylinder strength and can be taken as  

 8 N / mm
2
 , and  fctd   0.99 ln1  fcm /10. However bond stresses greater than those for

 60 N / mm
2
 should not be used, “ unless it can be verified that the average bond strength increases above this

limit”. 
 

3.3ACI 318-2005
(3) 

 
ACI 318-05 treats the anchorage requirements for straight deformed bars in tension by giving the required development 
length as :  

l 
  f s  

. 
t .e .s    

2
      300mm  ………… ……… …..(9)  

bd 
   

 

cd    / 2  Ktr 1.1  fc 

     

       

in which cd  / 2  Ktr may not be taken as more than 2.5  , f s is the bar stress to be developed, f c is the cylinder 

compression strength of the concrete  70MPa ,  t =1.3 for horizontal reinforcement placed such that more than 300 
 

mm of fresh concrete is cast below the development length or splice.  t =1.0 for other situations,  e treats epoxy-

coated reinforcement. Its value for uncoated bars is 1.0 and this used in the following,  s =0.8 for   19mm or 1.0 

 
 

 



 

for   22mm ( s =0.8 can probably be assumed for   20mm),  =1.3 for lightweight aggregate concrete and 1.0 

for normal density concrete, cd = the lesser of the smaller cover and s / 2 
 

Ktr   Atr  f yt  /10st n ,  Atr = total area of transverse reinforcement ,within the spacing “ st ”, that crosses the plane of 
 

splitting through the reinforcement being developed, st = spacing of transverse reinforcement, n = number of bars being 

spliced or developed along the plane of splitting.  

The definition of K tr  is not very clear. It does not define ‘ the plane of splitting’ or how to treat  Ast  if a stirrup crosses a 
 
crack plane twice. It probably intends the plane to be assumed to be horizontal so that all the vertical legs of stirrups 
count. 
Equation (9) corresponds to a limiting bond stress for bars without epoxy coating of :  

   

cd   0.5  Ktr  
fbd  

0.275 fc 
    

…… …… … ……(10)   ts
 

     
 

There is no explicit strength reduction factor  ( approximately a partial safety factor for resistance) in this section of  
ACI 318-05.The commentary states that ‘An allowance for strength reduction is already included in the expressions for 

determining development and splice lengths. To judge from the values of  for other circumstances, that for bond would 

be about 0.8 corresponding to  m  1.25 . 

 

4.DISSCUSSION AND PARAMETRIC STUDY 
 
The three codes’ equations for design bond stresses for the ultimate limit state are given below as applied to straight 
uncoated tension bars, with deformations complying with the requirements of EC2 or ACI 318, used in concrete of 

normal density and without welded cross bars. Where a code gives an expression for the bond length required to develop  

a given steel stress, the design bond strength has been obtained as  fbd   f sd  / 4lb . 
   

 0.5 

             

1- BS 8110 
f

bd  
f

cu     ………………(11)     

for slabs and for beams with minimum links. Otherwise  fbd   0.28  
f

cu 

2- EC2  f   2.2512 f     ..................….(12)     
bd 
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 1  K 

tr 
     
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The treatments of the influences of influential parameters by the above equations are summarised in table (1).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 
 
 
 

 

  Table (1) Parameters included in bond strength design by BS8110 , ACI-318 and EC2   
   

 

     

Code Concrete strength Top bar  Cover  A
st  

 
  

effect 
 mm mm      mm

2  

        

         
 

 
 
 
 
 
 

 

p  
 N  
2 
mm 

                        

BS8110 
 

f
cu       

(1) 
           

f
cu  40 N / mm2 

               

                  
 fc

2 / 3     
(2)  2   1.0 for 2  1 0.15cd    3 =1- K   

5   1  0.04 p 
     1.0 btm     

EC2 fc  50 N / mm2     32mm    where :     
1            

 0.7 
          

cd 

     

  

A
st  

  

 

for 

   

 50  

1  0.7 top  
2   132 /100 

is the min.of   
   

A
st ,min  fc  

   

cb  , cs  , s / 2
 

 1.0 
    

for   32mm 
   

As 

  

 See section 2.2.2     

 

A
st,min 

  

                =0.25 As    
       

t  1.0 btm(3)  s =0.8 for   19mm cd  0.5
   A

tr  

f
 yt  

   

ACI -318 

 f c    
K

 tr 

   
      


 t  1.3 top 

  

cd is the min.of cb  , cs , s / 2
      

fc  70 N  / mm 2    s =1.0 for    22mm 10st n 
   

       
                         

(1) The min. cb /  , cs  /  and (s / 2) /  are limited to=1.0 (2) In EC2 a bar is considered a top bar if it is more than 250mm above the bottom and less  
 

than 300mm below the top of the wet concrete during casting. (3)In ACI 318 a bar is considered a top bar if it is more than 300mm above the bottom of the 
wet concrete during casting.For additional limits see text.  
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(a) Values of K for beams and slabs by EC2 (b) Definition of Ast  by ACI-318 

 
 
 
 
 

 



 

Fig.(5)shows the relationships between fbd and f ck for bars with minimum (negligible) transverse reinforcement. 

Fig.(5-a) is for bottom-cast bars and Fig.(5-b) is for top-cast bars. In both parts there are single lines for BS8110 and 

two lines for EC2 ,one for cd   and one for cd  3 , beyond which there is no increase in fbd . There are four 
 

lines for ACI 318, a pair for cd   and a pair for cd  2 beyond which there is no further increase in fbd . In each 

pair there is one line for   19mm and one for   22mm . The effect of bar size is not shown for EC2 in which 

fbd is independent of  for   32mm and then decreases by 18% when   50mm . 

 

The lines for BS8110’s expression are drawn for f ck  up to 55 N / mm
2
 , although the code is not intended for use  

with such high strengths.For EC2 and ACI-318 the lines continue to the relevant upper limits of f ck =90 and 

70 N / mm
2
 respectively ,although EC2 limits the values of 

f
 ck to be used in calculating  fbd   to 60 N / mm

2
  “ 

unless it can be verified that the average bond stress increases above this limit”.          

The differences caused by the different relationships between  
f

bd and  f ck are small if the upper limits on f ck are 

ignored. This can be seen from the table(2) which gives the ratios between 
f

bd calculated from   
f

 c  ( BS8110 and 

AC1-318) and those calculated from f ctd (EC2) if the values of  fbd  are scaled to be equal when  f ck =35 N / mm
2
 . 

                         

      Table (2) Ratios of fbd  from  f c to  fbd  from 
f

 ctd         

f ck (N / mm
2
 )  20  25  30  35  40  50   60 70  80  90 

                          

                    

Ratios of  fbd  1.10  1.06  0.93  1.00 0.98  0.94   0.96 0.98  1.00  1.02 
              

For bottom bars with cd   the three codes’ values of 

f
bd are very similar , when the bar size is 19 mm or less.  

If the bar size is increased to 22-32 mm , the ACI values fall distinctly below those of BS8110 and EC2, and it is only 

when   50mm that ACI-318 and EC2 again give similar bond stresses. BS8110 values are higher than EC2 
 

ones for 

 
If the cover is increased the relationship between ACI-318 and EC2 is practically unaffected at 

cd   2 but EC2’s fbd  increases by a further 21% for cd   3 while the ACI value remains as for cd   2 . Since 

BS8110 does not make any allowance for the influence of cover,its bond stresses fall progressively lower in relation to 

the others as  
cd  /  is increased.  
The effects of increasing cd  /  are as below: 

 

 
f

bd for cd  2
f

bd for cd  3
 ______________ _____________ 

 
f

bd for cd 
f

bd for cd 
EC2  1.176  1.429 

ACI 318  1.667  1.667 
 
 
 
 
 
 
 
 

  32mm . 



 

For top-cast bars with  cd    , ACI-318 and EC2 give practically identical fbd  values if   19mm , while for 
 

  22mm , the ACI  fbd  is lower, though a little less so than for bottom –cast bars, due to ACI-318’s slightly
 

higher value for the top-cast/bottom cast ratio. As BS8110 makes no allowance for a top-bar effect. Its values of fbd 

are about 40% higher than those of both other codes when   19mm and about 75% above ACI-318’s values for 
 

  22mm. The BS8110 values become similar to the other codes when cd   2.5 .
 

In overall terms the design resistances from EC2 and ACI-318 are similar.There are inevitably differences between 

the results from BS8110 and the other two codes due to its neglect of the influences of cover, bar position at casting 

and bar size. For bottom-cast bars the only cases where BS 8110 is significantly on the non-conservative side of the 
other two codes arises with minimum cover and large bar sizes. 

 

For top-cast bars, BS8110 is significantly on the non-conservative side of ACI-318 and EC2 in all cases where cd  

2.5 , and is very much so for large bars. It is peculiar that the BS calls for increased cover for lap splices of top 
bars, but not for their anchorages. 

 
A point of potential concern in all three codes is that while their expressions for bond strength are based on a  

minimum cd /   1.0 , they allow detailing with spacings between bars as low as  which makes cd /  0.5. 
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b) top –cast bars 

Fig.(5) Design ultimate bond stresses for bars with negligible transverse reinforcement, comparisons of BS8110,EC2 

and ACI-318  
Although it does require minimum stirrups to be provided in beams, BS8110 does not relate bond strength to the area 
of stirrups provided. 

 

ACI-318 and EC2 do both take account of transverse reinforcement in their expressions for fbd . In ACI-318 the 
 

relevant term in the equation is           

  c 
d 
 K 

tr 
 1        c 

d 
 K     

0.5     .      with 0.5    tr  2.5.   

       
s 

            
        t             

Where Ktr   Atr  f yt /10st .n in N and mm units, and  t  and  s  are as above.  

As cd should not be less than  ,the maximum increase possible from transverse reinforcement is 67% when 

cd    but falls to 25% for cd   1.5 and to zero for cd   2 .   

In EC2 the equivalent term is 

 


1


2   

with 235   0.7 , 3 


 

1
 


 

K
 A

st  


 A

st min /  

A
s 1235  

                   

where K  1.0 for bars in the corners of links, 0.5 for main bars inside transverse horizontal bars and zero for main 

bars in the cover to transverse bars.1   and  2 are as before.   

For straight bars,  1  1.0 , 2  1  0.15cd / 1 0.7 , 5  1  0.04 p  for anchorages subjected to 

transverse pressure. If 5  1.0 , then, with cd  /   1.0 , 3  can be as low as 0.7 allowing a 43% increase of 

bond  strength  due  to  transverse reinforcement, but  this  reduces  to 21%  for  cd  /   2.0 and  to  zero  for 

cd  /   3.0 .                   

The presence of  t s   and 1   2 in these expressions results in the absolute increments of  fbd being greater for  
bottom-cast, than for top-cast bars, and greater for smaller rather than large main bars. The absolute increments are 

also greater for higher concrete strengths. 
 
 
 
 
 



 
In ACI-318 the expression includes the yield strength of the transverse reinforcement, while that in EC2 does not. 

The numerical influence of this difference is rather limited as the range of yield strengths covered by EC2 is only  

from 400 to 600 N / mm
2
 . 

 
The relationships between the bond strength and the area of transverse steel per unit length are very different in the 

two  codes.  ACI-318’s  Ktr /  is  directly proportional to Atr  / n st ,  but  EC2’s 3 depends on Ast  /  st 

multiplied by  lb / .  As a  result the extra  bar  stress  that  can  be  produced  by the  addition of transverse 

reinforcement is a linear function of Atr  

f
 yt / n st lb / in ACI-318 but a function of  Ast  /  lb / 2

 in 

EC2. 

 
To exemplify the practical implications of these recommendations, calculations have been made for bottom-cast 

32 mm corner bars (making A  / n  A ) with 32 mm cover with f 
ck 
 35 N / mm

2 
, and zero transverse 

tr st     

pressure. The small cover was chosen to provide the maximum scope for transverse steel to increase fbd . The use of 
 

a fairly large size of main bar allows a large range of Ast /  st to be realistic but does have the effect of reducing f 

sd for zero or negligible stirrups in ACI-318 .If the main bar size were reduced to  19mm the ACI-318 f sd 

values for negligible stirrups would be increased by 25% and would be similar to those for EC2. 

 

Fig.(6) shows the stresses f sd that can be developed by anchorage lengths from 10 to 40  .With the ACI-318 

approach significant increases in f sd can be achieved at all values of lb /  and the stirrups needed for this are not 

excessive ( st =12 mm at 180 mm centres). Following EC2 the increments of f sd are insignificant when lb / 

=10 or 20. With lb / =30 or 40 values of f sd similar to the maxima from ACI-318 are achievable but only 

with very large amounts of stirrups ( st =12 mm at about 60 mm centres). In relation to anchorages at simple 
 

supports or at concentrated loads at the ends of the cantilevers, EC2 will give practically no advantage to 

design including transverse reinforcement , but ACI-318 may give it some advantage. 
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Fig.(6) Effect of stirrups on bar stresses developed by various bond lengths 

 
 
 

 



 

( bottom-cast , corner bars 32 , fck   35N / mm
2
 , f yt   500N / mm

2
 , cs   cb   32mm) 

 
 

5.EMPIRICAL EQUATIONS AND EFFECTS OF PARTICULAR PARAMETERS 
 

The various empirical equations have to be judged primarily in terms of their accuracy and comparisons with test 
results are presented in chapter 3.There is however some interest in the differences between their structures and the 

relationships between their implications and those of the more theoretical methods. The listing of equations that 

follows tries to express them in comparable terms, except that the codes aim to give characteristic resistances, while 

the equations from research are more likely to be aimed at mean strengths. 

 
Neither lightweight concrete nor epoxy coated bars are considered.  

 BS8110 
(1)  

 fbk   0.78   fc 
  …………..(14)    

          

     


        0.4725 f 2 / 3    
EC2

(2)
     f            1   2  c   .………….(15)  

bk  c 
d 

 

 A 
 

l 
b 

 


 

          

           
             st       
     

 1.15 
  

 
1


K


     

 0.25 1 
 0.04 p      A  s 

t                s         

For fck   50N / mm
2
 , the top line becomes 3.3412 ln1.8  0.1 fck , but values 

 

of fck  60N / mm
2
 should be used only where there is evidence that the expression is applicable.1  1.0 for 

bottom bars or 0.7 for top bars. 2  132 /100  1.0 .In beams K  0.1 for bars in the corners of links and  
0.05 for other bars. In slabs K  0.05 where the transverse bars are in the cover of the main bars and K  0 in the 

opposite case. For slabs "0.25" is replaced by 0. Each bracketed term in the bottom line and the product of the three 
terms are limited to lie between 0.7 and 1.0. 

  
 0.34 

  
cd 0.5  

A
st 

f
 y t . 1 . 1 

 
ACI 318

(3)
   f  f  …………..(16)  

       

  
bk 

  
c  

 

10st n
 

t  s 

 

          
                
This assumes a capacity reduction factor of 0.8 has been used in determining the design expressions given in the  

code. 1/ t   1.0 for bottom bars or 0.7 for top bars. 1/ s   1.25 for   19mm and 1.00 for   22mm . 

cd  0.5  

A
st 

f
 yt  2.5    

 10st n    
       

      c 
d 

  A  f 
yt 

    
          

Orangun et al. 
(4)

    f    0.1  0.25   4.15    st   f  ..…..(17) 
        

  bu   c, o   


         c  

       
l
b   6020st n     

                    

This expression is for bottom bars, for top bars fbu is reduced by 25% to 30%. c,o is given as a step function which 

can be approximated by c,o  1  2cs / cb .  1.64 . 
 

cd  /   2.5,  lb /   10 ,  Ast f yt  / 6020sst n  2.5 
 


Darwin et al. 

(5)
 fbu  



 
 

  c 
d  0.48   

  

c,D  

 

 
 

     A   
 0.5  12.8  13.8t t d 

 st  f 1/ 4 …(18) 
  

   l
b  r  

st n
c  

       
           

   c 
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         
   0.1   0.9  1.25 , t  1 0.1 ,   t   1  34 f  

c,D   d r R   

cm 

       

            
 
 
 
 
 

 



                        

                        

      cd          

A
st     

 c,D      0.5  2.75t r t 
d  

        3.75 or 4.0          

          

st n
       

     


               

Valid only for bottom bars and lb /   16 .     

where tr  is a term representing effect of relative rib area,  td is a term representing effect of bar size. 

              c 
d 
 

2 / 3 
 

Batayneh
(6)  f    0.215 f 

2 / 3 1  0.6    0.86 f ………………(19) 
        

       b u  u      


 c  

                 

Batayneh derived his equation for the case 
c

b  cs  and the extension of it is cd 

where  
c

d  min cb , cs  , s / 2           
Equation (18) is modified by the authors and it includes the influence from transverse reinforcement and the relative 

rib area of the main steel and also changes the influence of concrete strength from proportionality to  f 
1 / 2

  to 
             c   

proportionality to f 
1 / 4

 .However, as explained below, these innovations are not thought to be helpful.     
       c         

Darwin et al's f 1 /  4  was introduced to improve predictions for high strength concretes, but the justification of it by 
     c          

Fig.1 of (reference 44) seems very weak. It shows that using the conventional f 
1 / 2

 slightly underestimates f 
bu            c    

when  f c is  below 25N / mm
2
 ,  gives  good  predictions  for  25  f c  50N / mm

2
   and  gives  some  unsafe 

              

results for fc  70 N / mm
2
 .The figure appears to include no data for 50  fc  70N / mm

2
 .     

EC2's use of f 2 / 3 follows from splitting failures being tensile and EC2 taking  f 
ct  

to be proportional to f 2 / 3 for 
     c       ck   

f ck  50N / mm
2 

. While this reasoning is not necessarily incorrect it does ignore the quite strong possibility that  
                
ductility in tension increases with decreasing compressive strength and that this could permit a greater redistribution 
of stresses along the line of a crack.  
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Fig.(7) Comparison of different treatments of the relationship between bond strength and concrete cylinder strength 
 
 
 

 



 
 

 

Fig.(7) compares the effects of different treatments of the influence of  f c on fbu , with all treatments scaled to give 

the same bond strength for f 
ck 
 35N / mm

2 
, and shows that the use of f 1 / 2 gives results similar to EC2.Thus 

   c  

unless comparisons with test results show that something else is necessary the influence of concrete strength will be 

represented by f c
1 / 2

 ( as in Andreasen
(7)

, Nielsen
(8)

, Tepfers
(9)

 and Morita and Fujii
(10)

 as well as Orangun, ACI 318 

and BS8110) with the possibility of an upper limit for f c . 

 

4. The empirical equations impose various upper limits on either fbu  ( fbk ) or on components of it. Whether these 
 

are intended as actual limits of bond strength or just as values beyond which the equations either become 
unsatisfactory or have not been verified is uncertain. 

The upper limit values of 

f
bk or 

f
bu for bottom bars are: 

BS8110 fbk   0.78  fc  4.41 N / mm
2 

EC2 (   32mm ) 

f
bk  0.675 fc

2 / 3
  for  fck   60 N / mm

2 

ACI 318 

f
bk 1.0625  

f
ck  for    19mm 

fbk   0.85 
f

ck  for   22mm 

Orangun et al. 

f
bu  2.12  fc   

Darwin et al. f 
bu 
 approx.2.8 f 1/ 4 

           c  
 

Fig.(8) compares these expressions with bond strengths obtained in tests with high resistances to splitting provided 
by either large concrete covers or transverse pressure (associated in one series with limited transverse 

reinforcement). The results considered are generally from works reviewed above but some results from Shin and  

Choi
(43)

 have been added to provide data for the range 45  f c  90 N / mm
2 

. The principal characteristics of the 
               

specimens are tabulated in Table (3).               

 Table (3) Data for test results plotted in Fig.(8)      
 Source  Test    

cd  
 

lb  
 

pu  
 

  mm type 
      

     


 


 f

 b u 

 
         

          

 Jensen
(11)

 , series 133 16 beam end  1.5 8.0 0.80-1.05  

 
Magnusson

(12) 16 pull-out   8.9 2.5 -   
 20 pull-out   8.3 2.5 -   
      

 
Shin & Choi

(13) 13 beam end  3.9 &8.5  5.0 -   
 

22 beam end 
 

5.0 5.0 - 
  

     

 
Untrauer & Henry

(14) 19 pull-out   3.5 8.0 0.40-0.80  
 

28 pull-out 
  

2.2 5.3 0.22-0.93 
 

     

 
It is clear that the upper limits that accompany the various equations should be seen as upper limits for those 

equations except perhaps in the case of Orangun's. They cannot be seen as actual upper limits of bond capacity for 

short anchorage lengths. 

 
The anchorage lengths in the tests considered were all short, probably shorter than should be adopted in design, 

where the actual minimum defined by EC2 is 10 100mm , which is not greatly different from the 8 in some  

of the tests. Within the range  5  lb /   8 there does not appear to be any significant influence of  lb /  on 
 
 
 
 

 



 

fbu,max . Whether there is an influence in Magnusson's tests with lb /   2.5 depends on which part of Fig.(8) is 
considered. 

 

From the figure it appears that the best safe estimate of an upper limit of bond strength would be fbu,max  
approx.0.4 fc although this appears to underestimate the resistance possible at very low values of 

fc  20N / mm
2
 . 

 

In view of the above the present upper limits on most equations for bond resistance seem irrelevant in the 

circumstances of straight end anchorages at simple supports, i.e. short bond lengths and transverse pressure.  
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Fig.(8) Comparisons of test results with various formulations for maximum bond strength 

 

Darwin's approach seems illogical, as the most probable reason for the average bond stress along an anchorage 

increasing as lb /  decreases is that the distribution of the bond stress becomes more uniform. It would be consistent 

with this for the maximum bond stress for a given concrete strength, cover and transverse reinforcement to be 

multiplied by a factor, which decreases as lb /  increases. The factor should have its maximum at the greatest 
 

value of lb /  for which a uniform distribution can be obtained. Nielsen employs a factor  /lb, applied to the   

concrete terms in expressions for fbu . This is probably a simplification as one would expect the distribution of fb to 

be more uniform in the presence of stirrups and probably also more uniform for weaker (more ductile) concretes. It 

does however seem to be an improvement on the formulations of Orangun and Darwin. An upper limit on  / lb is 
 

almost certainly needed. Fig.(8) shows little or no influence of  / lb   0.125 . 

 
 
 
 
 
 
 
 

 



 

6. CONCLUSIONS 
 

The main conclusions drawn from the treatment of anchorage of straight bars by codes of practice and some of 

empirical equations in literature are as folows: 

 
1.BS8110's expression was the simplest one which ignored most of parameters. 

2. EC2's expression is the only one here to take account of transverse pressure.  
3. EC2 and Darwin et al. express the influence of transverse reinforcement in terms of its area, while Orangun et al. 
and ACI 318 use the product of the area and yield stress. The former approach seems the more plausible where 

tensile resistances of steel and concrete are summed and Darwin
(5)

 notes that in tests
(15-17)

 the transverse 
reinforcement rarely yielded in failures of either splices or development lengths.  

4. The ratio lb /  is taken into account in the equations by Orangun and Darwin though not 
 

in any of the three codes. In both equations a term proportional to  / lb is added to terms depending on the cover 

and the transverse reinforcement, and an upper limit is imposed on  / lb (  / lb  0.1 in Orangun's and 
 

 / lb   0.0625 in Darwin's). Within limits, test data appear to show that reasonable results are obtained in this 
 

way, although Fig.(8) shows that Darwin's method would give very poor results at lower ratios of lb /  . 
 

5. Beyond specifications of minimum values for relative rib areas, the only empirical equation treating the influence 

of the geometry of deformations on bars' bond strengths is Darwin's. This allows an increase in fbu with  

increasing f R in the term "13.8 tr td Ast / st n " in which tr  1  34 f R and td  1  0.1 . Although there is 

some support for this in the University of Kansas tests referred to in Ref.(18), the formulation is not well supported  

in other works
(9,13, 19,20,21 and 22)

. In general the relationship between  f bu and the details of bar deformations seems  
   
rather unclear. There is also the problem that in considering the results of tests from the literature, details of 

deformations and values of f R are seldom given. Descriptions of deformations as complying with a specification 

cannot be interpreted as meaning that f R  was equal to the minimum permitted. 
 

6. There is considerable variation in the treatment of the influence of concrete strength with bond strength being 

taken to be proportional to anything from  f 
1 / 4  

to f 2 / 3 , the latter applying only to f 
ck 
 50N / mm

2
 . 

c   c    

7. There are many empirical equations for bond strength and as their reliability can only be judged in relation to test 
results. 
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